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Abstract

Objectives: Understanding the biological changes that occur prior to onset of late‐
life depression (LLD) is key to its prevention. To investigate potential predictors of

LLD, we assessed cognitive scores and neurodegenerative and vascular biomarkers

in healthy older adults who later developed depression.

Methods: Longitudinal data from the Alzheimer's Disease Neuroimaging Initiative

of 241 cognitively unimpaired and non‐depressed older adults aged 56–90 at

baseline with at least 4 years of follow‐up were included. Participants were clas-

sified based on whether they developed an incident depression (n = 96) or not

(n = 145). Cognitive measures of memory, executive functioning, and language, and

biomarkers proposed to be related to LLD: hippocampal volume, white matter

hyperintensity volume (WMH), and cortical and cerebrospinal fluid (CSF) amyloid

beta levels, were compared between the incident depression and the never‐
depressed groups at four time points: at baseline, the visit prior to onset, at

onset, and after the onset of depression.

Results: In the incident depression group, there was a mild decline in cognitive

scores from baseline to the visit before depression onset compared with the never‐
depressed group. The cognitive differences between the groups became more

marked after depression onset. Baseline cortical amyloid burden, CSF amyloid beta

levels, and WMH were significant predictors of incident depression. Compared to

the non‐depressed group, hippocampal volume was not reduced before onset, but

was reduced following depression.

Conclusions: Amyloid pathology and WMH can predict future development of LLD

in cognitively unimpaired individuals and may be involved in precipitating vulner-

ability for depression in older adults.
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Key points

� Subtle cognitive changes are observed before diagnosis of late‐life depression
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� White matter hyperintensities are associated with incident but not established late‐life
depression

� Hippocampal volume loss is detected only after depression onset

� Amyloid brain pathology in healthy older adults can predict late‐life depression

1 | INTRODUCTION

Depression is a leading cause of disability worldwide,1,2 and with the

rapid ageing of the world's population, late‐life depression (LLD)

constitutes a major and growing global challenge.3,4 LLD is still

believed to be under‐recognised and undertreated5–7 with detri-

mental effects on quality of life,8 functional ability,9 somatic health,

and life expectancy.10 To prevent LLD and its dire consequences, the

changes preceding depression onset need to be understood.

Depression is commonly accompanied by deficits in several

cognitive domains11 and higher age is a risk factor.12 Up to half of

individuals with LLD have cognitive impairment significantly greater

than their age‐ and education‐matched peers.13 Cognition may

improve with antidepressant treatment, but in the majority of cases,

the impairment persists even after adequate treatment of the mood

disorder.14 LLD has also been associated with subsequent cognitive

decline. One‐fourth of individuals with LLD who are cognitively un-

impaired, when depressed, have cognitive impairment 1 year later,15

and two meta‐analyses have concluded that LLD results in two‐fold
increased risk of dementia.16,17 Compared to the numerous studies

assessing cognitive performance after or at the time of LLD diagnosis,

there is a paucity of studies on cognition prior to LLD onset. From

assessments in younger adults, there is some evidence suggesting

that cognitive dysfunction can predate the affective symptoms.18–21

In older adults, there have been few studies, but one found that

mild cognitive impairment (MCI) is a risk factor for incident LLD22

and that in a small cohort of normally ageing individuals aged

≥75 years, those with LLD 3 years later performed worse on the

Mini‐Mental State Examination (MMSE) at baseline than those

without future depression.23 The relationship between cognitive

functions and incident LLD warrants further investigation.

Several scenarios could explain the association between LLD and

concurrent or subsequent cognitive impairment. Cognitive dysfunc-

tion could be due to an underlying neurological disease (e.g., cere-

brovascular, Alzheimer's, or Parkinson's disease), wherein depression

occurs either because the disease disrupts the emotion control circuits

and/or as a psychological reaction to the experience of functional

deterioration. In this case, cognitive deficits could be detectable

before the affective symptoms. Alternatively, or concomitantly,

depression in itself could cause cognitive disturbance and trigger or

worsen the process of cognitive decline, in which case the affective

symptoms would be expected to precede cognitive impairment. The

neuropathology most frequently implicated in the literature as the

underlying disease in the first scenario is cerebrovascular changes,

forming the basis for the vascular depression hypothesis.24–30

Vascular lesions compromising fronto‐striato‐limbic circuits and

evident on magnetic resonance imaging (MRI) by findings such as

white matter hyperintensities (WMHs) are presumably involved in the

development of vascular depression,31 although the existence of a

causal link remains controversial.32 Disputed is also the hypothesis of

amyloid‐associated depression.33,34 Among cross‐sectional studies,
several reported increased amyloid pathology in LLD or its association

with late‐life depressive symptoms,35–39 others found no associa-

tion,40–43 while a recent study reported a reverse association.44 In

longitudinal studies on cognitively unimpaired older individuals, am-

yloid pathology assessed by positron emission tomography (PET) or in

cerebrospinal fluid (CSF) has been linked to increased risk of incident

depressive symptoms,45–48 but not to incident screen‐positive
depression.49 Dysregulation of the hypothalamic‐pituitary‐adrenal
axis is common in depression, particularly in late‐life, and depressed

older adults have higher basal cortisol levels.50 High cortisol levels

have adverse effects on hippocampal neurogenesis51 and can predict

hippocampal atrophy and memory deficits in older adults.52 Hippo-

campal atrophy is the most frequently reported volumetric finding in

LLD53 and appears to be related to higher cortisol levels54 rather than

to amyloid pathology.41 As with cognitive impairment, it is still un-

certain whether the loss of hippocampal volume occurs prior to or

parallel with the affective symptoms. One longitudinal study found no

association between baseline hippocampal volumes and incident

depression,55 while another reported that hippocampal atrophy is

associated with subsequent depressive symptoms in older women.56

The objective of the current study was to use prospectively

collected longitudinal data of cognitive performance and neuro-

imaging from older adults who were cognitively unimpaired and

non‐depressed at baseline and compare the individuals who later

develop depression with those maintaining a stable mood. Assessing

incident depression allows for the evaluation of whether cognitive

impairment precedes clinical depression and for the examination

of the temporal course of depression, cognitive impairment, and

markers of the pathologies hypothesised to be involved in LLD,

namely, (1) hippocampal atrophy, (2) WMH, and (3) amyloid proteins

in the CSF and cortex, to elucidate whether they can predict LLD.

2 | MATERIALS AND METHODS

2.1 | Materials

Data used for this study were obtained from the Alzheimer's Disease

Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu) after the

approval of a data request application. ADNI is a longitudinal study

encompassing 63 sites in the United States and Canada, launched in
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2003 as a public‐private partnership, led by Principal Investigator

Michael W. Weiner, MD. For up‐to‐date information on ADNI, visit

www.adni‐info.org. The current study comprised participants initially

enrolled in ADNI1 or ADNI2, with some later rolled over to

ADNIGO/2/3. In addition to the ADNI eligibility criteria,57 all par-

ticipants met the following criteria at baseline in this study: (1)

Normal cognitive status, (2) No depression or other psychiatric dis-

orders in medical history within the last 10 years, (3) No use of an-

tidepressants, (4) Negative score on the screening question for

depression in the Neuropsychiatric Inventory (NPI)58 or the Neuro-

psychiatric Inventory Questionnaire (NPI‐Q),59 and (5) At least

4 years of subsequent follow‐up to have an adequate observation

period for the development of depression.

2.2 | Incident depression

Information about the presence of depression including medical

history, NPI/NPI‐Q scores, diagnostic summaries of visits, and

concomitant medications was reviewed. Incident depression was

defined by occurrence after baseline of either a depression diagnosis

noted in the medical history or the diagnostic summaries, use of

antidepressant(s) with supplemental information supporting that it

was prescribed for depression, and/or the depression item of the

NPI/NPI‐Q scored as present. The corresponding criteria for the

control group were no registered depression diagnosis, no antide-

pressants, and the depression item of the NPI/NPI‐Q scored as ab-

sent on all visits where this was assessed. Participants with missing or

ambiguous information were excluded. Figure 1 shows a flowchart of

the inclusion.

2.3 | Included visits

The time intervals between the follow‐up visits in ADNI vary, but the
assessments were most commonly performed at 6‐ and 12‐month
intervals. The visit at which depression was first diagnosed (accord-

ing to the above criteria) was noted as the ‘onset visit’. For 15 par-

ticipants, this was an interim phone visit, nine of whom had a

subsequent in‐clinic visit that was selected instead. The time of onset
varied from the visit scheduled 6 months after baseline to that

scheduled 156 months after baseline. The distribution of cases

diagnosed at each visit is shown in Supplementary Table S1. To

assess the controls at the comparable times, the same distribution

was used and a computer randomly selected which controls should

be assessed at each of the corresponding “onset visits”. For evalua-

tion prior to onset, the baseline visit and the in‐clinic visit preceding
the onset visit were included. For 10 participants in the incident

depression group (and by design also for 14 controls), the onset visit

was the first visit following baseline; thus, the visit prior to onset was

the baseline visit. Finally, to assess participants in the long run after

depression onset, the last visit with registered data (for cognitive

scores/MRI/CSF/PET) was included in the study. In a minority, the

onset visit was also the last visit with available data. Mean time from

baseline to the last follow‐up visit was 99.2 months (standard devi-

ation [SD] 35.5) for the whole sample, 106.8 months (SD 34.7, range

<49–171>) for the depression group, and 94.1 (SD 35.2, <49–172>)
for the control group.

2.4 | Cognitive scores and cognitive diagnosis

Cognition was evaluated using the validated composite scores for

executive functioning (CS‐Executive), memory (CS‐Memory), and

language (CS‐Language) derived from the ADNI neuropsychological

battery with item response theory methods. These scores are robust

and outperform individual domain‐specific measures.58,60,61 The

MMSE62 was included as a global cognitive measure. At baseline, all

participants fulfilled the ADNI criteria for normal cognition (NC):

Normal memory function with a score greater than education‐
adjusted cut‐offs on delayed paragraph recall of the Logical

Memory‐II subscale from the Wechsler Memory Scale‐Revised,63

MMSE score 24–30, Clinical Dementia Rating 0, and absence of

significant impairment in cognitive functions or activities of daily

living. ADNI1 had the criteria of no memory complaints aside from

those common to other normal subjects of that age. ADNI2 also

included some participants with self‐reported memory concern

(SMC), but where the concern was not equated by the study partner.

During follow‐up, participants were classified as NC/MCI/dementia

following published standards.57,64

2.5 | Magnetic resonance imaging and hippocampal
volumes

MRI acquisition was performed as described previously.65 The

current study used hippocampal volumes and total intracranial

volume (ICV) measurements from the University of California, San

Francisco (UCSF) cross‐sectional FreeSurfer datasets. These were

extracted by cortical reconstruction and volumetric segmentation

using the FreeSurfer image analysis suite66–69 documented and

freely available online (http://surfer.nmr.mgh.harvard.edu/). Only

volumes from segmentations that passed quality control were

included. As a meta‐analysis found no lateralisation effect,54 the

right and left hippocampal volumes were summed. The ratio be-

tween total hippocampal volume and ICV was calculated to adjust

for head size. In the UCSF dataset, 1.5 T scans were run with

FreeSurfer version 4.3, 3T scans from ADNI1/2 with version 5.1,

and 3T scans from ADNI3 with version 6. FreeSurfer‐derived
volumes generally have good reliability, but differences in field

strength and FreeSurfer version can bias the results.70,71 The pre‐
processed data from each version (at each time point) were,

therefore, separately converted to z‐scores, and the FreeSurfer

version was also entered as a covariate.
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2.6 | White matter hyperintensity

WMH volume estimates were included from the datasets released by

the University of California (UC), Davis. In ADNI1, WMH detection

was performed without the use of fluid attenuated inversion recov-

ery (FLAIR) sequences, relying on proton density, T1‐ and T2‐
weighted MRI combined with prior anatomical knowledge of WMH

occurrence in the brain. This method is robust, reliable, and performs

well compared to FLAIR‐based detection.72 In ADNI2/3, WMH

measures were obtained from T1 and FLAIR sequences, as described

in the ADNI protocols.73 The measures were adjusted for ICV and

log‐transformed before being converted to z‐scores separately for

the FLAIR and non‐FLAIR methods. The detection method was

included as a covariate.

2.7 | Amyloid biomarkers: CSF and PET

Protocols for lumbar puncture and CSF handling are explained in the

ADNI manuals (http://adni.loni.usc.edu/methods/documents/). We

included CSF amyloid beta 1–42 (Aβ42) analysed at the University of
Pennsylvania using a fully automated electrochemiluminescence

immunoassay (Roche Elecsys®).74,75 The upper technical limit is

1700 pg/ml, but Roche Diagnostics has provided values above this

based on extrapolation of the calibration curve for exploratory

research purposes. Studies comparing Elecsys Aβ42 with amyloid PET
have arrived at a cut‐off of 1100 pg/ml,76,77 which was adopted in the
current study (Aβ42 ≤ 1100 pg/ml = positive; Aβ42 > 1100 pg/

ml = negative amyloid biomarker). Florbetapir/18F‐AV‐45 PET data

analysed by UC Berkley were used for evaluating cortical amyloid. A

 
 
 
 

 
 

 

 
 
 

F I GUR E 1 Flowchart over the inclusion
process
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description of their processing methods can be found on the ADNI

website. Following the recommendation of the UC Berkley group, we

used standardised uptake value ratios (SUVRs) for a cortical summary

region divided by the whole cerebellum, and the accompanying

threshold 1.11 (SUVR > 1.11 = positive; SUVR ≤ 1.11 = negative

amyloid biomarker).

2.8 | Telomere length

Cognitive performance, amyloid pathology, WMH, and hippocampal

volume can be affected by normal ageing, and all analyses were

performed with and without age adjustment. In addition to chrono-

logical age, advanced cellular ageing could be a separate factor as

previous studies have found an association between depression and

telomere shortening,78 although for LLD, the results are conflict-

ing.79,80 Information about telomere lengths measured using a

quantitative PCR assay81,82 is available for some ADNI participants.

Comparisons of telomere length between the groups before, at, and

after onset were performed as supplementary analyses.

2.9 | Statistical analyses

For the descriptive data, t‐test/Mann–Whitney U‐test was used for

continuous variables with normal/skewed distribution and χ2‐test for

categorical variables. Binary logistic regression was used to assess the

prediction of incident depression (coded 1, controls 0). Odds ratios

were calculated with and without age, sex and time from baseline as

covariates. Significant p‐value<0.05. To address the cumulative risk of
false positives due to multiple testing, false discovery rate (FDR)

correction was performed following the Benjamini‐Hochberg pro-

cedure for demographic and clinical scores at baseline, adjusted

models with cognitive scores (three composite scores, MMSE, and

cognitive classifications), and adjusted models with amyloid bio-

markers (CSF, PET, and overall status) at each visit. Cohen's d was

calculated using the Psychometrica calculators.83 The main analyses

were performed using SPSS version 26 (SPSS Statistics, IBM).

3 | RESULTS

3.1 | Descriptives at baseline

As Table 1 shows, the average age at inclusion was higher in the

incident depression group. There were no significant group differ-

ences in sex, education, frequency of self‐reported memory concerns
(ADNI2 SMC cohort), or presence of the Alzheimer's disease risk

allele APOE‐ε4. All participants had a Geriatric Depression Scale84

score within the normal range, but fewer participants in the incident

depression group had score 0 compared with controls (Table 1). The

majority of cases in the study had late‐onset depression, as only one

TAB L E 1 Demographical and clinical characteristics at baseline

Incident depression Control group t/MWU/χ2 p Cohen's d

N 96 145

Age mean (SD) <range> 75.4 (5.1) <60–90> 73.7 (5.9) <56–89> 2.39 0.018* 0.31

Women (n, %) 47 (49) 65 (44.8) 0.40 0.598 0.08

Education, years median (IQR) <range> 16.0 (15–19) <8–20> 16.0 (15–18.5) <6–20> 6832.5 0.808 0.03

Married (n, %) 72 (75) 100 (69) 1.03 0.383 0.13

Widowed (n, %) 12 (12.5) 21 (14.5) 0.19 0.706 0.06

Not retired (n, %) 15 (15.6) 36 (24.8) 2.93 0.107 0.22

APOE‐ε4 (n, %) 30 (31.3) 36 (24.8) 1.20 0.303 0.14

SMC (n, %) 11 (11.5) 20 (13.8) 0.28 0.696 0.07

Modified Hachinski score median (IQR) <range> 0 (0–1) <0–3> 0 (0–1) <0–3> 6721.5 0.609 0.06

Hypertension history (n, %) 43 (44.8) 62 (42.8) 0.10 0.792 0.04

GDS median (IQR) <range> 1 (0–1) <0–4> 0 (0–1) <0–4> 5581.5 0.003** 0.36

GDS score 0 (n, %) 44 (45.8) 95 (65.5)

GDS score 1 (n, %) 32 (33.3) 30 (20.7)

GDS score 2 (n, %) 14 (14.6) 17 (11.7)

GDS score 3 (n, %) 3 (3.1) 1 (0.7)

GDS score 4 (n, %) 3 (3.1) 2 (1.4)

Note: Nominally significant group differences are asterisked (*) and significance also after false discovery rate correction for multiple comparisons are

marked with a double asterisk (**).

Abbreviations: APOE‐ε4, Apolipoprotein E ε4‐allele carrier; GDS, Geriatric Depression Scale score; IQR, Interquartile range; MWU, Mann Whitney

U‐score; SMC, significant memory concern—self‐report of memory concern cohort in ADNI 2; t, t‐test; χ2, Chi square.
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participant in the incident depression group and two controls had

depression more than 10 years prior to baseline in their medical

history. Telomere length was equivalent between the two groups

(Supplementary Table S2).

3.2 | Neuropsychological scores

There were no significant group differences in cognitive scores at

baseline (Table 2, Figure 2). At the time of depression, the

depressed group performed worse on CS‐Executive, CS‐Memory, and

CS‐Language with small effect sizes, the largest being for CS‐
Executive. At the last visit prior to onset only lower score on CS‐
Language was a nominally significant predictor of subsequent

depression, but did not survive FDR correction. In terms of the lon-

gitudinal change in scores between baseline and the visit prior to

depression (Table 3), decline in memory and MMSE scores were

nominally significant predictors of later depression with small effect

sizes, but these were not significant after FDR correction for multiple

tests. The cognitive differences increased after onset and were of

moderate size at the end of follow‐up.

3.3 | Hippocampal volumes

Hippocampal volumes were significantly reduced in the depression

group, but only after onset (Table 4). Hippocampal volume was not

correlated with cognitive scores at baseline, but after onset, there

were significant correlations, specially in the depressed group (Sup-

plementary Table S3).

3.4 | White matter hyperintensity

Higher WMH burden at baseline was a significant predictor of later

depression (Table 4). The effect size was also at the same level at the

visit prior to onset but with p‐value only close to being significant. At
the later visits, the effect sizes were lower and there were no signifi-

cant differences. WMH did not correlate significantly with cognitive

scores before onset, and there were only weak, negative correlations

at the later stages of follow‐up (Supplementary Table S4).

3.5 | Amyloid markers

Cortical amyloid burden was a significant predictor of incident

depression both at baseline and at the visit prior to onset, with

moderate to large effect sizes (Table 4). It remained significant after

correction for dementia or MCI during follow‐up. The depression

group had a higher cortical amyloid load at onset and at the last

amyloid PET assessment. Low CSF Aβ42 levels at baseline were a

significant predictor of later depression but without significant group

differences after baseline. The only significant correlations betweenT
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amyloid biomarkers and cognitive performance, after FDR correction

were at the last visit (Supplementary Tables S5 and S6). Changes in

cognitive scores between baseline and the visit prior to onset

(Table 3) were no longer significant predictors of incident depression

when amyloid biomarkers were added as covariates.

4 | DISCUSSION

As expected, we observed worse cognitive performance in the

depressed group. The first question we asked was whether cognitive

impairment was present before depression. On average 15 months

prior to depression, there were indications that memory and lan-

guage functions had subtly declined in the incident depression group.

This is in line with the observation in younger adults that poor

cognition can be a premorbid marker of depression.18,20,21 The next

question concerned the underlying mechanisms of pre‐depression
cognitive impairment. In studies involving young individuals, cogni-

tive deficits predating depression could be explained by shared

neurodevelopmental and/or genetic factors mediating both lower

cognitive abilities and vulnerability to depression.19,85–87 This

explanation does not fit with the current results for LLD as there

were no cognitive group differences at baseline. Cognitive impair-

ment initially became apparent during the years/months leading

Incident depression group Control group

Baseline Onset visit Last visit
-0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Memory

Baseline Onset visit Last visit
-0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Executive functions

Baseline Onset visit Last visit
-0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Language

Baseline Onset visit Last visit
-0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Language - adjusted

R
es

id
u

al
s 

+
1

Baseline Onset visit Last visit
-0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Executive functions - adjusted

R
es

id
u

al
s 

+
1

Baseline Onset visit Last visit
-0.2
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4

Memory - adjusted for age and sex

R
es

id
u

al
s 

+
1

F I GUR E 2 Composite cognitive scores at the four assessed visits for the incident depression group and control group presented as means

with 95%‐confidence intervals for raw scores and age‐ and sex‐adjusted residuals
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toward depression onset, which is a course more suggestive of

neurodegenerative mechanisms.

The authors of the studies reporting memory deficits preceding

depression in younger adults18,20 suggested that this impairment

could be linked to hippocampal dysfunction and atrophy. We only

observed significantly lower hippocampal volumes in the depressed

group late in the disease course. Cognitive performance did not

appear to be greatly influenced by hippocampal volumes before

onset, but after onset, cognitive scores were correlated with hippo-

campal volumes, suggesting that reduced hippocampal volume occurs

in conjunction with symptomatic LLD rather than as a predisposing

event. Our findings corroborate those of den Heijer et al.55 who

found no association between baseline hippocampal volumes and

incident depression but observed steeper decline in hippocampal

volumes following depression. Elbejjani et al.56 reported that the rate

of hippocampal atrophy was associated with more and worsening

depressive symptoms, but only in older women, not in men. Their

observation of a sex difference is interesting as women more

frequently report depressive symptoms also in late life88 and hip-

pocampal structures could be impacted by the postmenopausal

oestrogen drop because hippocampal progenitor cells express sex

hormone receptors involved in proliferation control.89 We reas-

sessed our data for each sex separately and indeed, the hippocampal

volume differences between the incident depression group and

controls were greater for women, but the differences before onset

remained non‐significant. Atrophy is a late finding, and functional and
cellular aberrations may be present long before detectable MRI

volume changes ensue. Our results do not exclude hippocampal

changes preceding LLD, but cross‐sectional hippocampal volumes
remained comparable to controls before depression.

TAB L E 3 Changes in neuropsychological scores from baseline to the visit before onset

Incident

depression

Control

group

Cohen's

d
Regression

coefficients

Regression model Adj2 with additional

correction for each of the biomarkers

Change −0.13 (0.57) 0.03 (0.42) 0.32 OR = 0.51, p = 0.023 OR (Adj2 + Hippocampal volume) = 0.49,

p = 0.023*

CS‐memory [−0.25 – −0.01] [−0.04–0.10] OR Adj1 = 0.50, p = 0.022 OR (Adj2 + WMH) = 0.48, p = 0.027*

N = 86 N = 131 OR Adj2 = 0.48,

p = 0.018*

OR (Adj2 + CSF Aβ42) = 0.66, p = 0.273

OR (Adj2 + Florbetapir SUVR) = 0.88, p = 0.812

Change −0.11 (0.69) −0.01 (0.65) 0.15 OR = 0.80, p = 0.280 OR (Adj2 + Hippocampal volume) = 0.75,

p = 0.218

CS‐executive
functioning

[−0.26–0.04] [−0.12–0.11] OR Adj1 = 0.81, p = 0.320 OR (Adj2 + WMH) = 0.87, p = 0.563

N = 85 N = 131 OR Adj2 = 0.78, p = 0.281 OR (Adj2 + CSF Aβ42) = 0.92, p = 0.773

OR (Adj2 + Florbetapir SUVR) = 1.95, p = 0.104

Change −0.13 (0.57) 0.01 (0.54) 0.25 OR = 0.64, p = 0.078 OR (Adj2 + Hippocampal volume) = 0.54,

p = 0.029*

CS‐language [−0.25–0] [−0.08–0.10] OR Adj1 = 0.63, p = 0.075 OR (Adj2 + WMH) = 0.58, p = 0.055

N = 86 N = 131 OR Adj2 = 0.57,

p = 0.042*

OR (Adj2 + CSF Aβ42) = 0.53, p = 0.054

OR (Adj2 + Florbetapir SUVR) = 0.95, p = 0.901

Change −0.13 (0.57) 0.03 (0.42) 0.32 OR = 0.51, p = 0.023 OR (Adj2 + Hippocampal volume) = 0.53,

p = 0.041*

MMSE [−0.25 – −0.01] [−0.04–0.10] OR Adj1 = 0.50, p = 0.022 OR (Adj2 + WMH) = 0.52, p = 0.045*

N = 86 N = 131 OR Adj2 = 0.51,

p = 0.029*

OR (Adj2 + CSF Aβ42) = 0.76, p = 0.455

OR (Adj2 + Florbetapir SUVR) = 0.94, p = 0.902

Note: The incident depression group is coded 1 and the control group coded 0. The first adjusted model (Adj1) includes age at baseline, sex, and time

from baseline as covariates. The second adjusted model (Adj2) also includes the cognitive score at baseline as a covariate. The nominally significant

group differences in the adjusted models are asterisked (*). None survived false discovery rate correction for multiple comparisons. The 24 participants

for whom the onset visit was the first visit after baseline, are not included.

Abbreviations: CS, composite score; CSF, cerebrospinal fluid; OR, odds ratio; SUVR, standardised uptake value ratio; WMH, volume of white matter

hyperintensities.
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Hippocampal volume is associated with both chronological age

and cellular age measured by telomere length.90 Telomere short-

ening has been frequently observed in studies on depressed younger

adults78 and in a recent, small study of LLD.79 Our supplementary

analyses of telomere length revealed no evidence of more advanced

cellular ageing in the LLD group at any time point. Our sample size

was small, but the results are in line with those of a larger LLD

study80 and other studies of depressive symptoms in older

adults91,92 that have failed to find an association with telomere

length. Older adults' high cumulative exposure to factors that can

shorten telomeres has been suggested to make a depression‐related
effect difficult to detect.80

Unlike hippocampal volume, WMH volume at baseline predicted

later LLD. Previous longitudinal studies have reported that WMH at

baseline are associated with incident LLD or incident depressive

symptoms,93–97 albeit not consistently.98,99 WMH are believed to be

a marker of vascular changes. Periventricular WMH correlate with

histological severity of arteriosclerosis and breakdown of the ven-

tricular lining, and deep WMH correlate with cortical microinfarcts

and demyelination.100 Histopathological correlates of WMH are,

however, heterogeneous and can be as minimal as slight matrix

disentanglement.101 Divergence in reports of WMH in LLD may thus

derive both from variations in WMH location102,103 and from WMH

with similar MRI appearance harbouring dissimilar cellular pathol-

ogy.101 The timing of WMH‐related increase in depression risk may

also depend on WMH location. Bae et al. found an association be-

tween severe periventricular WMH and depression 2 weeks after

stroke, while severe deep WMH at this time point were associated

with depression occurring 1 year post‐stroke.102 Demyelination and

axonal loss underlying WMH in fronto‐limbic circuits could impact

the emotional control networks and predispose individuals to

depression. This ‘vascular depression’ hypothesis24,31 has, however,

been challenged by autopsy studies failing to find more vascular le-

sions in established LLD compared to controls.104,105 Congruously,

we found that WMH load was not significantly higher at depression

onset. WMH might thus be important primarily in early stages of

depression development, relating to initiating events increasing the

vulnerability to depression, while later in the disease, there might be

no direct stimulus‐response function between WMH/vascular le-

sions and depression.

The strongest predictor of incident depression was cortical

amyloid. Although the sample size was reduced because Florbetapir

PET was not available for all participants, our results corroborate

those found in previous studies of incident depression/depressive

symptoms in cognitively normal older adults45–48,106 with one

exception.49 The overall evidence from longitudinal studies thus

converges on amyloid pathology being a risk factor for LLD/

depressive symptoms. The effect sizes for CSF Aβ42 levels in our

study were lower than those for cortical amyloid. Unlike amyloid

PET, CSF Aβ42 is only an indirect measure of brain Aβ accumulation.
Incongruity between Aβ CSF and Aβ PET is quite common and in-

dividuals with positive PET and negative CSF reportedly have higher

GDS scores.107 In our study baseline cortical amyloid was also aT
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significant predictor when correcting for later dementia or MCI. This

makes it less likely that amyloid‐associated incident depression was

solely caused by a psychological reaction to the awareness of de-

mentia development. Amyloid plaques accumulate in the brain

several years, even decades, before the emergence of cognitive

signs.108 The earliest amyloid depositions occur within the core

nodes of the default mode network, accompanied by disruption of

the internal functional connectivity of this network and its connec-

tions with the frontoparietal network.109 Functional connectivity

changes within and between these networks are also observed in

depression.110–112 Therefore, amyloid accumulation in the brain may

directly impact the pathophysiology of LLD. Resting‐state functional

MRI before depression onset was only available for a minority of the

participants and deferred us from assessing network connectivity

changes in relation to amyloid pathology and incident depression.

Nevertheless, this should be addressed in future studies.

The main strength of our study is the assessment at several time

points: twice before, at, and after depression onset, probing both

cognitive functions and neuroimaging biomarkers. The method of

detecting depression was based on review of all available informa-

tion. This makes it more difficult to reproduce compared with, for

example, using a threshold on a single depression scale, but it rep-

resents an inclusive approach with lower likelihood of depression

cases being overlooked. NC ADNI participants are volunteers

recruited to research and are probably not representative of the

general older population,57 limiting generalisability. The study was

restricted by its sample size and the fact that not all data types (e.g.

CSF and PET) were available at all visits. Another limitation is the

choice to evaluate neuroimaging cross‐sectionally at each visit,

rather than conducting a longitudinal analysis based on a base image

for each participant. Furthermore, LLD is a clinically heterogeneous

condition probably comprising several subtypes with diverse aetiol-

ogies; however, in this study, we did not attempt to differentiate

between clinical subtypes.

In conclusion, cerebral amyloid pathology and WMH can predict

future LLD. Subtle cognitive changes occur prior to LLD onset and

can partly be explained by the underlying amyloid pathology. These

results support the hypothesis that amyloid plaque formation and

emerging ischaemic lesions disrupt networks involved in cognitive

and emotional processing, thus predisposing older adults to

depression.
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